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ABSTRACT

When a spherical or cylindrical gas cloud expands into vacuum, the
resultant flow becomes asymptotically self-similar and independent of
the original cloud diameter. An analytic solution for the asymptotic
density profiles, given by Mirels and Mullen [L4] is re-examined and a new
solution proposed, which gives better agrecement with numerical computations.

Some applications of the asymptotic solutions are discussed,

.
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1. INTRODUCTION

The investigations reported here were initiated by a paper "Trans-
lational Equilibration of Wires Exploded in Vacua," by O. H. Zinke et al [l]*.
The authors of this paper made use of an unsteady spherical expansion of
ionized gas in order to infer the temperature of the gas from the
characteristics of the expansion. The method described by Zinke can be

_a powerful tool, provided that the unsteady flow resulting from an expanding
gas cloud is understood theoretically. It is believed that the theoretical
solution presented here straightens out some discrepancies 9bsérved by
Zinke. Further remarks on this are given in section 5. The solution
for the unsteady c¢ylindrical expansion can also be applied to a related
problem, the expansion of a hypersonic jet into vacuum.

In the above mentioned and other cases, the main interest is in the
asymptotic flow field after long times. For large times the density
distribution of the expanding gas cloud approaches an asymptotic similarity
form, which is independent of the original diameter of the cloud.

It can be shown, however, that the shape of the asymptotic density
profile depends on the initial density distribution of the gas before
expansion, In the following an attempt is made to derive approximate
solutions for the asymptotic density profiles for the case that the initial
density distridbution is uniform. Expansions with plane, cylindrical and

spherical symmetry will be considered.

]
Numbers in brackets denote references listed on page 25.
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2. ASYMPTOTIC NATURE OF THE FLOW
In the following it is assumed that the flow is isentropic and that
the gas can be treated as a continuum; i.e., the mean free path is very
small compared with the initial diameter of the gas cloud., Then the
equations of motion for flows of cylind}ical (6 = 1) or spherical (o = 2)

symmetry are resbectively:

R T AEE (1e)
%%H:-gg:f%gg:o (1v)
(3/p0) = (9/0o)Y | (1c)

Ps and p, are taken as initial density and pressure if the density is
initially uniform, or as the initial values at r = O if the density is not
uniform. It is assumed that the gas is at rest initially and inclosed
within a ;ylinder or sphere of radius R,.

For the following we introduce nondimensional quantities:

=L u=§-— r=;— t=‘E—a‘° 2
* " bo 8o Ro Ro (2)

where a4 1s the sound speed of the quiescent gas and found by

2 -, &
a'O Y po (3)
With these nondimensional quantities the equations of motion are:
P, Pu ., P8 .
3% " er T 9r 0 (a)
.a_‘é -32 Y-a ig = Lw
M I (k)

For the case that the density is initially uniform, the boundary conditions

are:

W




att =0; O0<r<l: p=1,u=0 .
l<r: p =0 (5)
att 20, r =0: u =0

For the case that 0 = 0, the Equations (4) together with boundary conditions
(5) describe the one-dimensional (plane) expansion of a slab of gas
extending either from r = -1 to r = +1 with r = O a plane of symmetry or
fromr =0 tor =1 with a fixed wall at r = 0, In a few cases, exact
solutiors of Equations (ka, ﬁﬁ) can be obtaineé. These solutions which we shall
discuss in the next paragraph, will serve as a guide to construct
approximate asymptotic solutjons for the more general case.

Here we are concerned with the asymptotic nature of the flow after long
times; i.e., for times large compared to Ry,/a,. For times which are large
in this sense, the original gas cloud has expanded many times and the
pressure term pY-e %% in Equation (4b) becomes relatively small, After
neglecting the pressure term Equation (Ub) is solved by

uw = rft (6)
With the solution (6) for u, Equation (la) has the solution:

ot = const £(r/t) (7)

where f(r/t) is ar arbitrary function of the one varisble r/t. It can be
seen from Equation (6) and (7) that the flow becomes asymptotically self-
similar; i.e., the density and velocity distributions at different times
are similar and differ only by scaling factors. While this similarity form
of Equations (6) and (7) means a certain simplification of the mathematical

treatment, the problem of finding the particular solution for f(r/t) is still

9




very difficult for the following reason. Since any solution of the form
(6) and (7) solves the equaticns of motion asymptotically, any of these
solutions represents a possible asymptotic flow, each one belonging to
ditferent initial conditions., Thus, one has to relate a given initial
density distribution to a corresponding f(r/t) and it seems that this

can be done exactly only by computing the whole flow history from the
beginning of the expansion up to large times where the flow becomes self-
similar. A computation of this sort can be performed numerically, using the
finite step method of characteristics. It must be considered, however,

that any finite step computation may become increasingly inaccurate when
carried out for too many steps, due to the accumulation of errors. The
number of steps necessary in order to reach the asymptotic similarity-
solution must be enormously large. In spite of this, numerical computations
for uniform initial densities and various values of y and o have been carried
out by several authors [2,3] and it appears that the results of these

computations are surprisingly accurate.

3. ANALYTICAL SOLUTION
A first attempt toward an analytical solution has been made by Mirels
and Mullen [4], however the solution does not show satisfactory agreement
with numerical results [2,3].
The solution proposed here is obtained by only slight modification of
the view of Mirels and Mullen {k] but it gives, nevertheless, far better
agreement with numerical results. The procedurc used to derive an analytical

expression for the asymptotic flow consicts in finding a valid generalization

10
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of certain exact solutions. As has been mentioned before, in a few cases

3
]
3
!

the Equations (4a), (Lb) can be solved exactly. These cases are:
1. The one-dimensional (o = 0) expansion of an initially uniform
slab of gas.

2. The similarity flows for ¢ = 0, 1, 2, These flows are strictly
self-similar at all times, but the initial density-distribution is not uniform.
The characteristics solution for one-dimensional expansion from uniform
initial conditions (case 1) is given in [5] (Courant and Friedrichs) and
is discussed in greater detail in [6,7]. In the asymptotic limit, this

solution simplifies to:

- ; - 22(v-
- RUGHL (2P =
u = rft (8v)

+

where N = 5{;%T7 and [ denotes the gamma-function,

The similarity flows have been investigated in References [8] and [9].
If R(t) is the position of the leading edpe of the expansion, one can
define a similarity variable T

y = r/R(t) (2)
co that the gas is confined in 0 s y < 1.,
-(o+1)
Assuming for the self-similar flow a form p = R tly);

v = %% . &(y) and substituting into Equations (ha, b) one obtains

o = rTOM)g L yayrT (10)
s By (11)
11
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where R satisfies the differential equation

R . 1 2oy pe(on)y-1)p

dt N RS (12)

The constants of integration are so determined, that for

t = 0 R=1;§?—;=o

In the asymptotic 1limit one finds

.2
R-m.v_l.t (13)
and Equations (10) and (11) become asympi- “ically:
1
e (7= - 2.1
ot?™ = (/o+l -(12i2)°+l[1 - (,/"‘Ic+ . 32_1 -}E’) i . (1ba)
u = rft (14v)

A compariscn of Equation (8) and Equation (14) shows that both formulas

are quite similar and of the form:

ot®t - D[l - (\-}%)EJB ~ (158)

u = rft (15b)
where D, V and B are constants. Thus, we assume, in accordance with Mirels
and Mull~n [4], that the asymptotic solution for uniform initial density and
o £ 0 is also of the form (15); so that it remains only to determine the
constants D, V and B, If nne of the three constants is given, say V,
then the other two can be determined from the conditions, that mass and
total energy are conserved. In our nondimensional variables these two condi-

tions can be expressed as:

12
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1 .
["prq dr = o+l H (10)
(o]
vVt
L .2 ,0 = L 1
'[‘o 2u r dr ) .,m . (17)

Equation (16) equates the mass of the expanded gas to the mass at t =
and Equation (17) does the same for the energy. Note, that for t — o the
thermal energy vanishes so that only the integral over the kinetic energy
density p/2 u? is taken at the left side of Equation (17), while for t = 0O
the kinetic energy is zero and the thermal energy per unit mass is:

%2

¢ = oy -

Introducing the new variable y = Vt and inserting (15a, b) into (16) and (17)

gives:

1

e [0 2P ey - == (18)
o}
1
" L

a2y - oo (19)
I |

The integrals in Equations (18) and (19) can be transformed into
Eulerian integrals of the first kind and expressed in terms of gamma

functions. It 1s, e.g.,
() (S2)

- )Ry = . 20)
[ (1-v) %P(B+1+°+1) (

Solving Equation (18) and (19) for B and D one obtains:

[!br;llva . 1]("*1 L (21)

13




o+l
1 o [+

D = V0+l * o+l ‘P(Bﬂ_)l"(g—;i) . (22)

Now only one constant, V, remains to be determined and at this point the
present analysis differs from Mirels and Mullen [4]. From Equation (15a)-
it can be seen, that V is the velocity of the leading edge of the
expansion (in units of a,).

Now Mirels and Mullen maintain that for uniform initial density the
velocity of the leading edge should be the same as for ore-dimensional flow.,
and therefore V = Q%T s regardless of the value of o, In other words, the
geometry, whether spherical or cylindrical, doés not influence the leading
edge velocity. The arguments given in favor of this are difficult and not
fully convinecing, but even if they were true they would not demand for V
a value of §%I . It is understood that Equation (15a) can be only an
approximate formula which must not reflect every detail of an exact solution.
It could be, that a minute fraction of the total mass "escapes" with the
leading edge velocity §%T and that the bulk of the remaining mass expands
with an "effective" leading edge velocity less than that. In order to have
the best approximation, valid for the bulk of the mass, it would then be
advisable to plck a smaller value for V. This is also suggested by
Equation (ll4a) for the similarity flow.

Here one observes that the geometry does have an influence on the
leading edge veloclty expressed by the geometrical factor 73%{ . If the
geometrical facter 75%: has an influence in the case of similarity flow,

it is reasonable to assume that it has an analogous influence in the case of

uniform initial density. This would suggest:

1k

L - :" M"'
L Ik R
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1 2
Vzm.y—_-i, (23)

for both similarity and uniform initial density flow.

A more rigorous derivation of (23) is given in Appendix A,

With (23) inserted into (21) and (22) the constants B and D are:

B o= (D) - (5D, (24)
r(e+ + =
D = __2_ ‘/m(y_l) o+l ) 25
(°+l( ¢ ) M) M) &)
and from Equation (15a),
o™ = [1- (2 G0 I P . (26)

For ¢ = 0 Equation (8a) is recovered from Equation (26); i.e.,
Equation (26) is exact for ¢ = O, For o # O the formula (26) is different
from Mirels and Mullen's, who obtain larger values for the exponent B and
the factor D as a result of the larger V values they assumed. In fact,
for 0 2 1 the exponentsB obtained by Mirels and Mullen are even larger than
the exponent for similarity flow, which is ;%T (Equation lbka). A consequence
of this is that the resultant density distribution is less full than the
corresponding distribution for similarity flow. This is an odd result,
considering that the uniform density profile is fuller initially and one
ought to expect that it also remains fuller than the similarity profile

after expansion., The exponentsobtained by Mirels and Mullen are so large

(.o fPor 0 =2, y == 7/5; B = 8 instead B = 1 following from Equation 24)

15
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that they essentially cut off the density profile at a distance inside of
the leading edge which is Lantamount to our supposition that only a
minute fraction of the mass actually achieves a velocity close to that of
the leading edge. In other words, the large values of B tend to partly
compensate for the prohibitively large leading edge velocity assumed by
Mirels and Mullen.

The values here observed for B (Equation 24) are always smaller and
therefore the density profiles fuller, than for the corresponding similarity
flow.

Apparently the formula (26) for the density profile becomes nonsensical

for B < 0, or

1 o+l
v (27)

Now, it is interesting to note that inequality (27) describes just those cases
which are physically meaningless. To see this, we recall that y = H%E
where N is the number of internal degrees of freedom of the gas. Therefore,
;%I = g. On the other hand (o+1) is the number of dimensions of the space
into which the gas expands. If this is (o+l) = n, then inequality (27) states:
N < n, which obviously cannot happen, since even a hypothetical gas must
have at least as many internal as external degrees of freedom.

The density factor D of Equation (25) has a simple physical meaning:
it gives, apart from the time factor t°+l, the density at the origin r = 0,
The factor D is plotted in Figure 1 and Figure 2 for ¢ = 1, 2 versus vy.

For comparison, the corresponding curves obtained b yMirels snd Mullen (4]

16
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and the results of ..umerical computations by Greifinger [2] are plotted
in the same diagram. Also the curve for ¢ = 0 is shown in Figure 1. For
this case the results of Mirels and Mullen [4], Greifinger [2] and the
present analysis agree with each other and the exact solution. For
c=1,2 the results of the present analysis are in very good agreement
with the numerical data [2].

Another check against numerical results is given in Figure 3, which
shows the density profile for o =1, y = 5/3 in comparison with the results
of Mirels and Mullen [4] and numerical data computed at NRL [3]. All
profiles are normalized by dividing through the density at r = O. Again,
?E? agreement between the present analysis and the numerical computation is very

good. In Figure 2 the values for D according to Equation (24) are plotted

only for v s 5/3. For larger y-values the exponent B (Equation 24) becomes
negative and the formula (26) is no longer applicable. One might suspect
that the approximate solution (Equation 26) becomes less accurate on

approaching y = 5/3.

L. LATERAL EXPANSICN OF A HYPERSONIC JET
BOUNDED BY VACUUM

If the lateral flow velocity u of the expanding jet 1s small compared

with its axial velocity V,, then the equations of motion for steady flow

reduce to Equations (1) with & replaced by %6’ where x is the axial
distance from the nozzle. Using the nondimensional guantities defined

in Equation (2) and defining a nondimensional axial distance x = % , one ?
)

19




Nm.._nn A *1=o0 o} aoid Apsuep oyoidwiAsy

PA € 34n914

(P) 424

(¢) J24 ¢ IpolIBWINU




has to replace t in Equations (4) by 533 = ﬁﬁ’ Thus, the solution for
0

the density distribution of the jet is obtained from Equation (26) for

¢ =1 and substituting ﬁ for t. This solution is valid for M, >> 1.
(]

5. MEASUREMENT OF PLASMA TEMPERATURE

In their paper, "Translational Equilibration of Wires Exploded in
Vacua," [1] the authors describe a method for measuring the temperature of
jonized gas with the aid of a drift tube. The method, which is described * -
in detail in [1], is essentially as follows: The plasma source, in this
case an exploding wire, is located at one end of a long evacuated drift
tube, while an electrode is placed at its Oppositewend. It is assumed
that the wire is heated uniformly by a short current pulse. After the
short heating period the gaseous, ionized wire material starts to expand
without being heated subsequently. The ion flux, after reaching the electrode,
gives rise to a time dependent current in the elzctrode cirecuit which can
be observed. From the observed current distribution the temperature of
the original plasma cloud can be inferred.

In evaluating the experimental data Zinke et al. [1] assumed, the

plasma would expand like a collision-free gas; 1.e.. according to free
molecular flow. On the basis of this assumption, it wes impossible tofit
the theoretical prediction to the experimental data unless 2 hypothetical
"eontainment-time" was introduced. In other word:, the shape of the observed
current-time distribution was quitec different from the shipe of any of the
pocsible theoretical distributions. The theoretical current distributions

for tree molccular flow are given by

2l
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i(E) = Koo (- 2 5) (28)

where t is the time elapsed from the explosion of the wire, r the distance
between the explosion and the electrode, T the temperature of the original
plasma cloud and K a constant related to the total number of ions.

The distributions Equation (28) form a two-parameter class of curves
with parameters X and T. Nonevof these curves fit the experimental data.
A satisfactory fit could be achieved only after introducing a third

parameter, H, the "containment-time." Assuming the plasma did not start
to expand at time t = O, i.e., immediately after heating, but at a later

time, t = H, the distribution Equation (28) would be altered to:

RN L K m re
J(t) = ('E"H)4 exp["~2}ﬂ| ('E-H)z] . (29)

With properly chosen K, T, H, Zinke could obtain a reasonable fit to all
experimental data. However, the physical meaning of the containment-time,
H, remained completely unclear. Obviously, the assumption of free molecular
flow is not correct for the high initial densities encountered in the wire
explosion. In continuum expansion the energy of the gas molecules is
redistributed as a result of collisions, This may significantly change

the flow and the current distribution observed at the electrode of the
drift tube. The theoretical current distribution for continuum flow is

proportional to pu =p . %with p given by Equation (26) and 0 = 2. Thus:

g = LE(L.(QLeD BP (30)

2 et -
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Here T is the distance between the electrode and the plasma source

(exploding wire) and T the time elapsed from the explosion.

When K and a, were chosen properly, a good fit could be obtained to the
experimental data of Zinke without the assumption of a containment-time.
; . a2 = o KE
From a, the temperature can be determined by: Sg Yoo
The values for the temperature obtained from this fit were about

10° %K. These values are more likely correct than those obtained by Zinke

of about 10° “K.

APPENDIX A

Introducing a new dependent variable p* by
at+l .
p = (p*) (31)

and substituting (31) into Equations (ka, b) gives the following set of

equations for p¥*:

2p* , Ap¥u | o *[a-ie} =

At ¥ ar * o PUT Ar ° (322)

du , A #(y=2)(ot )t Ao

3 Y47 (a+1)p Ar y (32v)
Let us now consider the factor (% - ;%) in the last term of Equation

(32a). This factor ic exactly zero or the similarity sclution, as can be
seen from Equation (11).
For the case of uniform initial density thir frotor boeomes usymptotically
zere, since u - %. It 15 also zaro near the center r - 0, which follows
from the boundary conditions (5) according to which u - orter® t...
We therefore assume, that the average cffect of the last term of Equation (32a)

is small and to a certain approximation it can be neglected altogether. ?

23
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With the further transformations:

u* = g+1 3 t¥ = Lo+

(y* - 2) = (y-2)(o#l) +o

we obtain by substituting into (32a,b):

¥ | dpku¥

ot¥ * or 0 (34e)
ou¥ Ju¥ *-2) dp¥

‘Sléjg touk = (P*)(Y ) gg— =0 (34p)

From (34a,b) we observe, that p¥, u* satisfy the equations of motion (4a,b)
for o = 0 with y¥ replacing y. p¥*, u¥ also satisfy the same boundary
conditions as p, u for the case of uniform initial density. The asymptotic
solution, therefore, can be obtained from (8a,b) with p, u, t, y replaced
by ¥, u¥, t¥, y¥; i.e.,

pRE* [1 - (.Yf;l. L)z:l-g%l-}:_ly ’

5 % (352)

W/t (350)
Taking the (o+l) power of Equation (35a) and substitution of (31) and
(33) into (3%a,b) gives:
- (= - 2
ot = constfs - (R LGET P ET (38)
u = r/t . (36b)

The constant in Equation (36a) can now be re-adjusted so as to satisfy the

mass conservation. The solution (36a) then is identical with Equation (26).

24
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